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@ Two-sided fractional diffusion equations are important in many
applications: transport in heterogeneous porous media (Benson et al.,
2000), turbulence modeling (Chen, 2006), (del-Castillo Negrete et al.,
2004), (Gunzburger et al., 2018), and biomedical acoustics (Treeby
and Cox, 2010).

@ Most numerical methods assume Dirichlet boundary conditions (BCs):
(Meerschaert and Tadjeran, 2006) , (Mao and Karniadakis, 2018),
(Samiee et al., 2018).

@ For anomalous diffusion, a homogeneous Dirichlet BC models an
absorbing boundary.
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@ However, many of these applications involve a conserved quantity in a
bounded domain.

@ From a stochastic point of view, particles are reflected at the
boundary and the total mass does not change.

@ Recently, effort has been spent on developing mass-preserving,

reflecting (Neumann) BCs for space fractional diffusion equations
(Ma, 2017), (Baeumer et al., 2018a,b), (Deng et al., 2018).
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One-Sided Fractional Diffusion Equation:

Riemann-Liouville
o Consider one-sided space-fractional (1 < a < 2) diffusion equation on
[L,R]:
a (67
au(x, t) = DY u(x, t)

@ The positive (left) Riemann-Liouville derivative on the bounded
interval [L, R] is:

on 1 o" [ u(y,t)
[e3 i n—o —
D ulx t) = oxn I ule ) = F(n—a)ox" /,_ (x — y)oe—ntl dy

o To derive reflecting boundary conditions, write in conservation form

0
(X, t) + fFRL(X, t) =0

87” ox

with flux Fgy(x,t) = fGDi‘jlu(x, t).
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Reflecting Boundary Conditions: Riemann-Liouville

@ Assume some initial mass My = fLR u(x, t) dx that is conserved for all
time t.

@ Integrate the mass conservation equation

6/\/]0
/ g u(x, t) dx

—/L anFRL(X, t') dx
= FRL(L, t) — FRL(R, t).

@ Imposing zero flux at the boundary Fg; (L, t) = Fri(R,t) = 0 ensures
mass conservation, yielding a reflecting BC (Baeumer et al., 2018a):

Di‘jlu(x,t)zoforx:Land x=Rforallt>0
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One-Sided Fractional Diffusion Equation: Patie-Simon

@ Also consider an alternative space-fractional diffusion equation
8 (0%
By u(x, t) = CDTy u(x, t)

@ The Patie-Simon (Patie and Simon, 2012) or mixed Caputo (Baeumer
et al., 2018a) fractional derivative for 1 < a < 2 is

O e 1 o [~ Uyt
D% = — 9ot - - | )
Lrulxt) 8X8L+ u(x, ) r2e-a) 8x/,_ (x—y)>1 dy
@ The corresponding flux is Fc(x, t) = —Cai’flu(x, t), where 3?;1 is a

Caputo derivative.

@ Applying zero flux yields a reflecting BC:

927 u(x, t) = 0 for x= L and x= R for all ¢t > 0.
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Numerical Solutions
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X X
(a) Riemann-Liouville flux (b) Caputo flux

Figure: Numerical solution using a) Riemann-Liouville fractional derivative and b) Patie-Simon
fractional derivative with reflecting BCs. « =1.5, C=10n 0 < x <1 at time t = 0 (solid line),
t = 0.05 (dashed), t = 0.1 (dash dot), t = 0.5 (dotted).
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© Two-Sided Fractional Diffusion: BCs and Numerical Methods
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Two-Sided Fractional Diffusion Equation:

Riemann-Liouville

The two-sided space-fractional diffusion equation on [L, R]:

atu(x, t) = pCD}; u(x, t) + gCD%- u(x, t) + s(x, t)

where 1 < a <2, where C>0, p,qg >0, and p+ g =1, while s(x, t) is a
source term. The positive (left) and negative (right) Riemann-Liouville
fractional derivatives are given by

. " g 10" " ulyt)
Dfsu(x, t) = O ,,I/_+ u(x, t) = M(n—a) 8X”/ (x — y)o—n+l dy

@ n n—a 1 ot
]D)R* U(Xv t) = (_1) ox" IR* U(X’ t) r(n _ 8X" / (y X a )n+1 dy
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Two-Sided Fractional Diffusion Equation: Patie-Simon

We also consider an alternative space-fractional diffusion equation

gtu(x, t) = pCD  u(x, t) + gCD%- u(x, t) + s(x, t)

« _ a a—1 _ 1 8 x ul(% t)
D u(x 1) = 5 05 ulx 1) = F(2a)6x/L (x— )1 dy

. 9 .. 19 (R dyy
Df-ulx ) = ~ 5 0 ulx ) = £5— 1y / =1

using the Patie-Simon (Patie and Simon, 2012) or mixed Caputo
(Baeumer et al., 2018a) fractional derivatives for 1 < a < 2.

x ()
ofvu(x, t) = ! / L) dy

M(n—«a) (x — y)a—ntl
(n)(
a u(y, t
Ol "—a)/ (v— Xa”“dy
are the positive (left) and negative (right) Caputo derivatives.
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Conservation Form

e Physically, u(x, t) represents concentration governed by a local mass
conservation (continuity) equation

QF(X, t)=0

u(x, t) + o

9

ot

@ F(x,t) is a flux function (generalized Fick's law) that accounts for
nonlocal diffusion.

@ The flux function is given by
Fre(x, t) = QD" u(x, t) — pCDY T u(x, t)

Fe(x, t) = qC@,%:lu( t) — pC@L+ u(x, t)

where Fgi(x, t) is a Riemann-Liouville flux and F¢(x, t) is a Caputo
flux.
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Reflecting (no-flux) Boundary Conditions

@ Identify a no-flux BC by setting F(x, t) = 0 at the boundary. Setting
F(x,t) =0 at x= L and x = R yields reflecting BCs:

pDi‘jlu(x, t) = qﬂ])%ilu(x, t) for x= L and x = R for all t > 0.

p@iflu(x, t) = qag__lu(x, t) for x= L and x = R for all t > 0.

@ These boundary conditions are nonlocal since the BC at x= L or
x = R depends on all values of u(x, t) in the interval [L, R] (if p# 0 or

1).

o If p=1, these BCs reduce to the reflecting BCs proposed in
(Baeumer et al., 2018a).
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Other BCs

@ Also consider reflecting on the left boundary and absorbing on the
right boundary (reflecting/absorbing BCs)

RL: p]]))‘z:lu(x, t) = q]D)‘;:lu(x, t) for x= L and u(R,t) =0

C: p@i‘flu(x, t) = qagflu(x, t) for x= L and u(R,t) =0,

@ Absorbing on the left and reflecting on the right (absorbing/reflecting
BCs)

RL: u(L,t) = 0 and pDY; u(x, t) = D% u(x, t) for x= R

C: u(L,t) =0 and p@f‘flu(x, t) = qagflu(x, t) for x=R.

@ Absorbing (Dirichlet) BCs on both boundaries u(L,t) = u(R,t) =0
will also be considered.
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Finite-Difference Approximations

Discretize using explicit or implicit Euler scheme combined with the shifted
Grinwald estimate (Meerschaert and Tadjeran, 2006)
J+1
D, fog) = h D gy i11) + O(h)
=0
n—j+1
Dg-flx) = ™ Z g f(xj+i-1) + O(h)
i=0
where h = (R — L)/n with Griinwald weights g%.

Figure: Particle interpretation of Griinwald estimate.
Kelly et al. (MSU)
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Finite-Difference Approximations

@ The explicit Euler scheme is given by
pCAt L2

u (X, ter1) = u (g, th) + Tho Zg?u(xj—i—i-l, tk)
=0

qCAt n il
o > grulxion, t) + At s(x, 1)

i=0

o Define uy = [u(x;, tx)] along with the source s, = [At s(x;, tk)],
yielding a matrix problem:

Ukt = Uk + BruBT + BuB™ + s

where 3, = pCh™®At, 3_ = qCh~®At, and BT are (n+1) x (n+1)
iteration matrices.
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Finite-Difference Approximations

@ The explicit scheme is written compactly as
Ugr1 = ukA + Sk

where A= [+ 3,Bt +3_B".
@ Applying an implicit Euler discretization yields

U1 = Uk + Brugr1 BT + Bouip 1B + sy,
@ This implicit scheme may be written as
Ukr1M = up + spy1,

where M= |- 3,B* —3_B".
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I[teration Matrix: Riemann-Liouville Flux

@ Consider the Euler schemes associated with the Riemann-Liouville
diffusion equation subject to reflecting BCs with BT

8t if0<j<nandi<j+1

1 ifi=1landj=0

bij=<1—a ifi=j=0

—gff:il if j=nand i<n

0 otherwise .

N

@ [7Tb;jis the rate of mass leaving from location x; and arriving at x;.

@ The entries for column j = 0 prevent mass from leaving the left
boundary x = L, while the entries for j = n prevent mass from leaving
the right boundary x = R.

@ The iteration matrices for reflecting/absorbing and
absorbing/reflecting BCs have all entries in the n-th column or zeroth
column set to zero, respectively. For absorbing BCs, set columns
j=0and j = n to zero.
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Consistency of BCs: Riemann-Liouville Flux

@ We show the iteration matrix for Riemann-Liouville flux is consistent
with reflecting BCs: p]D)i‘flu(x, t) = ]D)%flu(x, t).
@ The explicit update equation at x= R (j = n) is
n
pCAt 1
s ng,‘_i u(xi, ty) +

i=0

(u (-1, t6) + (1 = @)u (xn, )

U (Xn, tky1) = U (Xn, tk) —

qgCAt
ha

@ This is equivalent to

u(Xn, t —u(Xxp,t ¢ - B
U (xn k+1)At (xn k):_hg_l &0t u (i, te) +

1
qC _
o S (s )
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Consistency of BCs: Riemann-Liouville Flux

e As h— 0,

n

1
hozfl

gt u(xi t) = D tu(x ) at x=R
=0
@ The second term A~ Z}l:o 1__,.1 (Xnti—i, tx) is consistent with

D%:lu(x, tk) at x= R as h — 0. See (Baeumer et al., 2018a) for
details.

@ Apply a similar argument at x = L, yielding
pﬂ))i‘jlu(x, t) = D%ﬁlu(x, t) for x=Land x=R

@ Apply a similar argument to demonstrate consistency of boundary
conditions for the Caputo flux.
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Stability Analysis: Riemann-Liouville Flux

To prove stability, estimate the eigenvalues of the matrices A and M using
the Gerschgorin circle theorem (Atkinson, 1989):

Lemma

The radii of the Gerschgorin circles of the matrix BT = [b;}] are given by

=Y |bij

=0,
are given by
a—1 ifi=0
=< « if0<i<n
1 if i = n,
while the radii of the Gerschgorin circles of the matrix B~ = [by—j n—j] are

r,,_j.

v
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Stability Analysis: Riemann-Liouville Flux

The explicit Euler method (for Riemann-Liouville flux) subject to any
combination of absorbing and reflecting BCs is stable if At/h* < 1/(«aC)
over the region L < x< Rand0<t< T.

For reflecting BCs, the radii of the Gerschgorin circles are

Bi(a—1)+p- ifi=0
Ri=< pia+ b o ifo<i<n
By +B_(a—1) ifi=n,

1-Bi(a—1)—p_ ifi=0
ajj = 1—([5’++6,)a if0<i<n
1-8y —p_(a—1) ifi=n.
[]
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Stability Analysis: Riemann-Liouville Flux

Hence a;;+ R; =1 for all i, while a;; — Ri; =1 —2R;. To ensure X< 1
and stability, we require 1 — 2R; > —1, or R; < 1. Since the largest R; is
a8+ + B-), requiring

a(fy+p6-) <1

The cases of absorbing/reflecting, reflecting/absorbing, and absorbing BCs
are similar. [

v

Theorem

The implicit Euler method with Riemann-Liouville flux subject to any
combination of absorbing and reflecting BCs for 1 < a < 2 is
unconditionally stable for all At and any grid spacing h.
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© Two-Sided Fractional Diffusion: Analytical Steady-State Solutions
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Kernel: One-Sided Diffusion Equation w/ RL Flux

o In the one-sided case (p = 1), the kernel ker (D* . ) of the
Riemann-Liouville derivative on the interval [—1,1] is computed in
(Baeumer et al., 2018a). Define p(x) = (1 4+ x)*/I'(1 + «).

u(x) = cop_(x) + cipl_;(x) where cp, c1 € R

o To check, note that D, . u(x) = D2/ “1fu(x). Since

P ph(x) = ply 5,

P 1+U( ) = ¢ + C1X,

which is the kernel of the second derivative D?.

@ The only steady state solution on [—1,1] with a total mass of one
that satisfies reflecting BCs is oo (x) = 217%(a — 1)(1 + x)*~2.

@ The steady-state is singular at the left end-point x = —1 and regular
at the right end-point x = 1.
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Kernel: One-Sided Diffusion Equation w/ RL Caputo Flux

@ The kernel ker (Dﬁﬁ) of the Patie-Simon derivative on the interval
[—1,1] is computed in (Baeumer et al., 2018a):

u(x) = cop;r_l(x) + c1 where ¢, c; €R

@ To check, note that v/(x) = cop,. ,(x) and I2:1+p;l2(x) is a constant.

@ The only steady state solution on [—1,1] with a total mass of one
that satisfies reflecting BCs is us(x) = 1/2.

@ This solution is the same as the steady-state solution for the classical
(o = 2) diffusion equation.
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Two-sided Jacobi Polyfractonomials

Definition

The two-sided Jacobi

— /| polyfractonomials used by (Mao and
‘ coo o Karniadakis, 2018) Q% (x) are
Iviae | defined by

e

oy
m
N
N,
\
\
i
/
\,

N
v
v
¥
i
f
i
1
1
\

D Q) = (1 AL+ 0P ()

1 08 0 0s i where P;”(x) are Jacobi polynomials
of order m> 0 and p,v > —1.

Figure: Two-sided Jacobi polyfractonomials y
(m=0,1,2 and 3) with p =v = —.25.
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Fractional Integral of Q" (x)

Lemma

Lletl<a<?2 p+qg=1, and let m > 0 be an integer. Using Theorem
6.4 in (Podlubny, 1999)

PLQ () + gh=2 @Y (x) = CnPrt (%) (9)
82
LQ“ () 8 QPVM(X)a (10)
where
ptv=a-—2

o () (25

co— sin(m(a—1)/2)I[(m+ a — 1)
m mlsin(m(a —1)/2 — 7u)

v
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Kernel: Two-Sided Riemann-Liouville Derivative

Theorem

The kernel of the two-sided Riemann-Liouville derivative on [—1,1] is given
by
ker(Dg;) = co(1 — x)H(1 4+ x)” + cax(1 — x)*(1 + x)”

where ¢y and ¢y are arbitrary constants.

Proof.
Let m=0or 1in D} Qn” (x) = Cmg—;PZ;“(x). Then

azP” (x)=0.

Since P,;/'(x) is either a constant or a linear function, ker(Dg,)
follows. Ol

v
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Two-Sided Fractional Diffusion: RL Steady-State

Theorem

The steady state solution with unit mass
Uso(x) = K(1 — x)*(1 + x)”

with normalization constant 1/K = B(v + 1, u + 1)21T#+Y satisfies
Dg, uso(x) = 0 subject to reflecting BCs

p]D)‘i}} u(x, t) = q]DDf__lu(x, t) for x= L and x = R for all t > 0.

Note that us(x) = o @ (x) satisfies the zero flux condition
Fri(x, t) = —p0/OxP S tuso(x) + g0/ OxE~"use(x) = 0, while c; Q)" (x)
does not. Ol

v
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Two-Sided Fractional Diffusion: RL Steady-State

3 3p
25}
H
z | =
Q15 15
S s
1
1 l
!,
2
05 2%
0 ===
1 05 0 05 1 1 05 0 05 1
X X
(a) a=15 (b) a=1.1

Figure: Analytical steady state solution ueo(x) = K(1 — x)#(1 4 x)¥ evaluated using a) o« = 1.5
and and b) o = 1.1 with p = 0 (solid), 0.25 (dashed), 0.5 (dash-dotted), and .75 (dotted).
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Kernel of Two-Sided Patie-Simon Derivative

The kernel of the two-sided Patie-Simon derivative Dipg on the interval
[—1,1] is given by

ker (D3s) = co + c1(1 + x) o F(—p, 1 +v;2 +v; (1+x)/2).  (12)

where 2F1(a, b; ¢, w) is the Gauss hypergeometric function. In particular,
the steady state solution u~(x) subject to reflecting BCs with L = —1 and
R =1 with unit mass is us(x) = 1/2.

v

RENEILS

(Ervin et al., 2018) also computed the kernel of D3¢ on [0, 1] using a
different method.
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Numerical Experiments: Riemann-Liouville Flux

u(x.t

[ \

4 07 05 025 0 025 05 075 1 4 7 5 025 0 025 05 075 1

(c) p;O.S (d) p=0.25

Figure: Numerical solutions using oo = 1.5, C = 1, and reflecting BCs. t = 0 (solid), t = 0.05
(dotted), t = 0.1 (dash-dotted) and t = 2 (dashed), and the steady-state solution (circles).
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Numerical Experiments: Caputo Flux

(b) absorbing-reflecting

! r/’ \
- Gl \

1 o7 05 025 0 025 05 075

1

(c) reflecting-absorbing (d) reflecting

Figure: Numerical solutions using « = 1.5, C =1, and p = 0.25 using a) absorbing BCs, b)
absorbing-reflecting BCs, c), reflecting-absorbing BCs, and d) reflecting BCs at t = 0 (solid),
t = 0.05 (dotted), t = 0.1 (dash-dotted) and t = 2 (dashed).
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@ One-Sided Tempered Fractional Diffusion
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Tempered Fractional Diffusion (w/ A. Lischke)

@ The normalized tempered fractional diffusion equation is defined by

0 o o
5P (6 1) = DY pa(x, ) = Apa(x ) (13)

where X > 0 is the tempering parameter and 1 < o < 2.
@ The tempered Riemann-Liouville (TRL) derivative is defined by

DS x) =e MDY, (eAXf(X))
_ 1 o X —A(x—y) 1-a
_I'(2—a)dx2/L € Y(x—y) " *Ry)dy,

@ Solutions on the real line are tempered a-stable densities
pr(x, t) = eMp(x, t)e ™" (Baeumer and Meerschaert, 2010).
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Kernel of Tempered Fractional Diffusion Equation

@ Determine all steady state-solutions ux(x) (e.g., kernel) of the
one-sided tempered fractional diffusion equation on [0, 1]:

Dg‘f‘uoo(x) — AUs(x) =0

o We utilize the modified Mittag-Leffler functions E;, 5(x)
(Sankaranarayanan, 2014) and (Baeumer et al., 2018a):

oo Xkoc-l—ﬁ
B 5(x) = X En i (47) = kz_% Feki 71D

where E, g(x) is the two-parameter Mittag-Leffler function (MLF).

@ The modified Mittag-Leffler functions are eigenfunctions of the
Riemann-Liouville derivative for 3 =a —1and f =a —2

Dg. £1,503) = Ex, ()
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Kernel of Tempered Fractional Diffusion Equation

The tempered fractional diffusion equation has a kernel
oo = €06 VEn 0 1 (M) + cre M E] oo (W),

for 1 < a < 2 where ¢y and ¢y are arbitrary real constants.

Proof.

Choose w(x) such that s (x) = w(x)e ™. Then
]D)S‘I\ Uso(X) — A%Uso(X) = 0 reduces to an eigenvalue problem on the

interval [0, 1]
Dg. w(x) = A"w(x) (14)

Use the scaling property of the fractional derivative

DG iAx) = A*Dg; f(x), and both w(x) = E, , ;(Ax) and
w(x) = E,, ,_,(\x) satisfy the eigenvalue problem. O

v
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Steady State Solution with Reflecting Boundary Conditions

Theorem

The steady-state solution with unit mass for all t is

e AX

too(X) = —= (Eqa—2(M) = Bga-1(M9)) (15)

with normalization constant K = e *\*72E, ,(\?).

Proof.

Let uo(x) = e E}, ,_1(x) and u1(x) = e7E}, ,_»(x). By properties of
MLFs, u1(x) > uo(x) for all x> 0 and up(x) ~ 1/a and uy(x) ~ 1/a.
Hence, the only choice ¢y and ¢ that ensures uo(x) = up(Ax) + u1(Ax)is

non-negative for any X is cg = —cyp = K > 0. Then normalize via

| A\

K= /01 (u1(x) — uo(x)) dx

—
Kelly et al. (MSU) Two-Sided BCs June 22, 2018 39 /48



Numerical Solutions

30 15

25

20 1
S =
215 2
5 5

»—\
o
o

.5

(a) t=0 (b) t=0.2, 0.4, 0.6, 0.8
() t=2.5and 3.0 (d) t=10

Figure: Numerical solutions using & = 1.5 and A = 1. For b) short times, solutions are similar to
pa(x). For d) long times, numerical solution converges to usc(x):
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© Summary and Open Problems
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o Reflecting (Neumann) boundary conditions for two versions of the
two-sided, space-fractional diffusion equation that conserve mass were
established.

@ A conditionally stable explicit Euler scheme and an unconditionally
stable implicit Euler scheme were proposed using the shifted
Grinwald estimate from (Meerschaert and Tadjeran, 2004) and
stability was demonstrated using the Gerschgorin circle theorem.

@ Steady state solutions subject to reflecting BCs using
Riemann-Liouville flux are singular at one or more of the end-points,
while steady-state solutions subject to reflecting BCs using Caputo
flux are constant functions.

@ Steady-state solutions for (one-sided) tempered fractional diffusion
were shown.
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Open Problems

@ Explicitly compute the domains of the two-sided RL and PS fractional
derivatives using the two-sided Jacobi polyfractonomials. Perhaps this
can help establish well-posedness (in the strong sense) for two-sided
fractional diffusion.

@ What is the correct flux/model /BC combination for a given
application? Perhaps these 1D numerical models and steady-state
solutions combined with data can help us pick out correct model for
the application.

© Applications to Hydrology and Fluid Mechanics: Adding an advection
(drift) term and non-homogeneous BCs. Also need to formulate
two-sided diffusion in 2D /3D with arbitrary boundaries.
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Caputo Fractional Diffusion is not a diffusion model!

u (x.t)

Figure: Numerical solution of the Caputo fractional diffusion equation with o = 1.5.
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Iteration Matrix: Caputo Flux

@ Euler schemes associated with the Patie-Simon diffusion equation
subject to reflecting BCs have an iteration matrix (Baeumer et al.,

2018b)
(82,1 fO<j<nandi<j+1
1 if i=1and =0
-1 ifi=j=0
bij=q—g " ifi=0and0<j<n

g2 ifi=0andj=n
—g‘,f:il if j=nand 0<i<n

0 otherwise ,
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Numerical Experiment
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(a) n =100 grid points (b) convergence study

Figure: Exact solution using the RL derivative (n = 100 grid points) and « = 1.5 with 8 = 2.
PS solution is very similar. b) relative L? error of the numerical solution.
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28

uo(x) = mp;(x) -1+ ﬁ)P;+,3(X)- (16)
B
s(x,t) = —e ! <u0(x) + Zliﬁ — B+ 1)p§(x)> , (17)
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