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Motivation

Two-sided fractional diffusion equations are important in many
applications: transport in heterogeneous porous media (Benson et al.,
2000), turbulence modeling (Chen, 2006), (del-Castillo Negrete et al.,
2004), (Gunzburger et al., 2018), and biomedical acoustics (Treeby
and Cox, 2010).
Most numerical methods assume Dirichlet boundary conditions (BCs):
(Meerschaert and Tadjeran, 2006) , (Mao and Karniadakis, 2018),
(Samiee et al., 2018).
For anomalous diffusion, a homogeneous Dirichlet BC models an
absorbing boundary.
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Motivation

However, many of these applications involve a conserved quantity in a
bounded domain.
From a stochastic point of view, particles are reflected at the
boundary and the total mass does not change.
Recently, effort has been spent on developing mass-preserving,
reflecting (Neumann) BCs for space fractional diffusion equations
(Ma, 2017), (Baeumer et al., 2018a,b), (Deng et al., 2018).
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One-Sided Fractional Diffusion Equation:
Riemann-Liouville

Consider one-sided space-fractional (1 < α ≤ 2) diffusion equation on
[L,R]:

∂

∂tu(x, t) = CDα
L+u(x, t)

The positive (left) Riemann-Liouville derivative on the bounded
interval [L,R] is:

Dα
L+u(x, t) = ∂n

∂xn In−α
L+ u(x, t) = 1

Γ(n − α)

∂n

∂xn

∫ x

L

u(y, t)
(x − y)α−n+1 dy

To derive reflecting boundary conditions, write in conservation form

∂

∂tu(x, t) + ∂

∂xFRL(x, t) = 0

with flux FRL(x, t) = −CDα−1
L+ u(x, t).
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Reflecting Boundary Conditions: Riemann-Liouville

Assume some initial mass M0 =
∫ R

L u(x, t) dx that is conserved for all
time t.
Integrate the mass conservation equation

∂M0
∂t =

∫ R

L

∂

∂tu(x, t) dx

= −
∫ R

L

∂

∂xFRL(x, t) dx

= FRL(L, t)− FRL(R, t).

Imposing zero flux at the boundary FRL(L, t) = FRL(R, t) = 0 ensures
mass conservation, yielding a reflecting BC (Baeumer et al., 2018a):

Dα−1
L+ u(x, t) = 0 for x = L and x = R for all t ≥ 0
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One-Sided Fractional Diffusion Equation: Patie-Simon

Also consider an alternative space-fractional diffusion equation

∂

∂tu(x, t) = CDα
L+u(x, t)

The Patie-Simon (Patie and Simon, 2012) or mixed Caputo (Baeumer
et al., 2018a) fractional derivative for 1 < α ≤ 2 is

Dα
L+u(x, t) = ∂

∂x∂
α−1
L+ u(x, t) = 1

Γ(2 − α)

∂

∂x

∫ x

L

u′(y, t)
(x − y)α−1 dy

The corresponding flux is FC(x, t) = −C∂α−1
L+ u(x, t), where ∂α−1

L+ is a
Caputo derivative.
Applying zero flux yields a reflecting BC:

∂α−1
L+ u(x, t) = 0 for x = L and x = R for all t ≥ 0.
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Numerical Solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

1

2

3

4

5

u(
x,

t)

(a) Riemann-Liouville flux

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

1

2

3

4

5

u(
x,

t)
(b) Caputo flux

Figure: Numerical solution using a) Riemann-Liouville fractional derivative and b) Patie-Simon
fractional derivative with reflecting BCs. α = 1.5, C = 1 on 0 ≤ x ≤ 1 at time t = 0 (solid line),
t = 0.05 (dashed), t = 0.1 (dash dot), t = 0.5 (dotted).
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Two-Sided Fractional Diffusion Equation:
Riemann-Liouville

The two-sided space-fractional diffusion equation on [L,R]:

∂

∂tu(x, t) = pCDα
L+u(x, t) + qCDα

R−u(x, t) + s(x, t)

where 1 < α ≤ 2, where C > 0, p, q ≥ 0, and p + q = 1, while s(x, t) is a
source term. The positive (left) and negative (right) Riemann-Liouville
fractional derivatives are given by

Dα
L+u(x, t) = ∂n

∂xn In−α
L+ u(x, t) = 1

Γ(n − α)

∂n

∂xn

∫ x

L

u(y, t)
(x − y)α−n+1 dy

Dα
R−u(x, t) = (−1)n ∂n

∂xn In−α
R− u(x, t) = (−1)n

Γ(n − α)

∂n

∂xn

∫ R

x

u(y, t)
(y − x)α−n+1 dy
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Two-Sided Fractional Diffusion Equation: Patie-Simon
We also consider an alternative space-fractional diffusion equation

∂

∂tu(x, t) = pCDα
L+u(x, t) + qCDα

R−u(x, t) + s(x, t)

Dα
L+u(x, t) = ∂

∂x∂
α−1
L+ u(x, t) = 1

Γ(2 − α)

∂

∂x

∫ x

L

u′(y, t)
(x − y)α−1 dy

Dα
R−u(x, t) = − ∂

∂x∂
α−1
R− u(x, t) = 1

Γ(2 − α)

∂

∂x

∫ R

x

u′(y, t)
(y − x)α−1 dy

using the Patie-Simon (Patie and Simon, 2012) or mixed Caputo
(Baeumer et al., 2018a) fractional derivatives for 1 < α ≤ 2.

∂α
L+u(x, t) = 1

Γ(n − α)

∫ x

L

u(n)(y, t)
(x − y)α−n+1 dy

∂α
R−u(x, t) = (−1)n

Γ(n − α)

∫ R

x

u(n)(y, t)
(y − x)α−n+1 dy

are the positive (left) and negative (right) Caputo derivatives.
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Conservation Form

Physically, u(x, t) represents concentration governed by a local mass
conservation (continuity) equation

∂

∂tu(x, t) + ∂

∂xF(x, t) = 0

F(x, t) is a flux function (generalized Fick’s law) that accounts for
nonlocal diffusion.
The flux function is given by

FRL(x, t) = qCDα−1
R− u(x, t)− pCDα−1

L+ u(x, t)

FC(x, t) = qC∂α−1
R− u(x, t)− pC∂α−1

L+ u(x, t)

where FRL(x, t) is a Riemann-Liouville flux and FC(x, t) is a Caputo
flux.
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Reflecting (no-flux) Boundary Conditions

Identify a no-flux BC by setting F(x, t) = 0 at the boundary. Setting
F(x, t) = 0 at x = L and x = R yields reflecting BCs:

pDα−1
L+ u(x, t) = qDα−1

R− u(x, t) for x = L and x = R for all t ≥ 0.

p∂α−1
L+ u(x, t) = q∂α−1

R− u(x, t) for x = L and x = R for all t ≥ 0.

These boundary conditions are nonlocal since the BC at x = L or
x = R depends on all values of u(x, t) in the interval [L,R] (if p ̸= 0 or
1).
If p = 1, these BCs reduce to the reflecting BCs proposed in
(Baeumer et al., 2018a).
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Other BCs

Also consider reflecting on the left boundary and absorbing on the
right boundary (reflecting/absorbing BCs)

RL: pDα−1
L+ u(x, t) = qDα−1

R− u(x, t) for x = L and u(R, t) = 0

C: p∂α−1
L+ u(x, t) = q∂α−1

R− u(x, t) for x = L and u(R, t) = 0,

Absorbing on the left and reflecting on the right (absorbing/reflecting
BCs)

RL: u(L, t) = 0 and pDα−1
L+ u(x, t) = qDα−1

R− u(x, t) for x = R

C: u(L, t) = 0 and p∂α−1
L+ u(x, t) = q∂α−1

R− u(x, t) for x = R.

Absorbing (Dirichlet) BCs on both boundaries u(L, t) = u(R, t) = 0
will also be considered.
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Finite-Difference Approximations
Discretize using explicit or implicit Euler scheme combined with the shifted
Grünwald estimate (Meerschaert and Tadjeran, 2006)

Dα
L+f(xj) = h−α

j+1∑
i=0

gαi f (xj−i+1) +O(h)

Dα
R−f(xj) = h−α

n−j+1∑
i=0

gαi f (xj+i−1) +O(h)

where h = (R − L)/n with Grünwald weights gαi .

Dx

i−4 i−3 i−2 i−1 i i+1 i+2 i+3 i+4

Figure: Particle interpretation of Grünwald estimate.
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Finite-Difference Approximations

The explicit Euler scheme is given by

u (xj, tk+1) = u (xj, tk) +
pC∆t

hα
j+1∑
i=0

gαi u (xj−i+1, tk)

+
qC∆t

hα
n−j+1∑

i=0
gαi u (xj+i−1, tk) + ∆t s (xj, tk) .

Define uk = [u(xi, tk)] along with the source sk = [∆t s(xi, tk)],
yielding a matrix problem:

uk+1 = uk + β+ukB+ + β−ukB− + sk

where β+ = pCh−α∆t, β− = qCh−α∆t, and B± are (n + 1)× (n + 1)
iteration matrices.
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Finite-Difference Approximations

The explicit scheme is written compactly as

uk+1 = ukA + sk

where A = I + β+B+ + β−B−.
Applying an implicit Euler discretization yields

uk+1 = uk + β+uk+1B+ + β−uk+1B− + sk+1,

This implicit scheme may be written as

uk+1M = uk + sk+1,

where M = I − β+B+ − β−B−.
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Iteration Matrix: Riemann-Liouville Flux

Consider the Euler schemes associated with the Riemann-Liouville
diffusion equation subject to reflecting BCs with B+

bi,j =



gαj−i+1 if 0 < j < n and i ≤ j + 1
1 if i = 1 and j = 0
1 − α if i = j = 0
−gα−1

n−i if j = n and i ≤ n
0 otherwise .

β+bi,j is the rate of mass leaving from location xi and arriving at xj.
The entries for column j = 0 prevent mass from leaving the left
boundary x = L, while the entries for j = n prevent mass from leaving
the right boundary x = R.
The iteration matrices for reflecting/absorbing and
absorbing/reflecting BCs have all entries in the n-th column or zeroth
column set to zero, respectively. For absorbing BCs, set columns
j = 0 and j = n to zero.
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Consistency of BCs: Riemann-Liouville Flux

We show the iteration matrix for Riemann-Liouville flux is consistent
with reflecting BCs: pDα−1

L+ u(x, t) = qDα−1
R− u(x, t).

The explicit update equation at x = R (j = n) is

u (xn, tk+1) = u (xn, tk)−
pC∆t

hα
n∑

i=0
gα−1

n−i u (xi, tk) +

qC∆t
hα (u (xn−1, tk) + (1 − α)u (xn, tk))

This is equivalent to

hu (xn, tk+1)− u (xn, tk)

∆t = − pC
hα−1

n∑
i=0

gα−1
n−i u (xi, tk) +

qC
hα−1

1∑
i=0

gα−1
1−i (xn+i−i, tk)
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Consistency of BCs: Riemann-Liouville Flux

As h → 0,

1
hα−1

n∑
i=0

gα−1
n−i u (xi, tk) → Dα−1

L+ u(x, tk) at x = R

The second term h1−α
∑1

i=0 gα−1
1−i (xn+i−i, tk) is consistent with

Dα−1
R− u(x, tk) at x = R as h → 0. See (Baeumer et al., 2018a) for

details.
Apply a similar argument at x = L, yielding

pDα−1
L+ u(x, t) = qDα−1

R− u(x, t) for x = L and x = R

Apply a similar argument to demonstrate consistency of boundary
conditions for the Caputo flux.
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Stability Analysis: Riemann-Liouville Flux
To prove stability, estimate the eigenvalues of the matrices A and M using
the Gerschgorin circle theorem (Atkinson, 1989):

Lemma
The radii of the Gerschgorin circles of the matrix B+ = [bi,j] are given by

ri =
n∑

j=0,j ̸=i
|bi,j|

are given by

ri =


α− 1 if i = 0
α if 0 < i < n
1 if i = n,

while the radii of the Gerschgorin circles of the matrix B− = [bn−i,n−j] are
rn−j.

Proof.
See computation in (Kelly et al., 2018).
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Stability Analysis: Riemann-Liouville Flux

Theorem
The explicit Euler method (for Riemann-Liouville flux) subject to any
combination of absorbing and reflecting BCs is stable if ∆t/hα ≤ 1/(αC)
over the region L ≤ x ≤ R and 0 ≤ t ≤ T.

Proof.
For reflecting BCs, the radii of the Gerschgorin circles are

Ri =


β+(α− 1) + β− if i = 0
β+α+ β−α if 0 < i < n
β+ + β−(α− 1) if i = n,

ai,i =


1 − β+ (α− 1)− β− if i = 0
1 − (β+ + β−)α if 0 < i < n
1 − β+ − β− (α− 1) if i = n.
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Stability Analysis: Riemann-Liouville Flux

Proof.
Hence ai,i + Ri = 1 for all i, while ai,i − Ri,i = 1 − 2Ri. To ensure |λi|≤ 1
and stability, we require 1 − 2Ri ≥ −1, or Ri ≤ 1. Since the largest Ri is
α(β+ + β−), requiring

α (β+ + β−) ≤ 1.

The cases of absorbing/reflecting, reflecting/absorbing, and absorbing BCs
are similar.

Theorem
The implicit Euler method with Riemann-Liouville flux subject to any
combination of absorbing and reflecting BCs for 1 < α ≤ 2 is
unconditionally stable for all ∆t and any grid spacing h.
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Kernel: One-Sided Diffusion Equation w/ RL Flux

In the one-sided case (p = 1), the kernel ker
(
Dα
−1+

)
of the

Riemann-Liouville derivative on the interval [−1, 1] is computed in
(Baeumer et al., 2018a). Define p+α (x) = (1 + x)α/Γ(1 + α).

u(x) = c0p+α−2(x) + c1p+α−1(x) where c0, c1 ∈ R

To check, note that Dα
−1+u(x) = D2

xI2−α
−1+u(x). Since

Iβ−1+p+α (x) = p+α+β(x),

I2−α
−1+u(x) = c0 + c1x,

which is the kernel of the second derivative D2
x.

The only steady state solution on [−1, 1] with a total mass of one
that satisfies reflecting BCs is u∞(x) = 21−α(α− 1)(1 + x)α−2.
The steady-state is singular at the left end-point x = −1 and regular
at the right end-point x = 1.
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Kernel: One-Sided Diffusion Equation w/ RL Caputo Flux

The kernel ker
(
Dα

−1+
)

of the Patie-Simon derivative on the interval
[−1, 1] is computed in (Baeumer et al., 2018a):

u(x) = c0p+α−1(x) + c1 where c0, c1 ∈ R

To check, note that u′(x) = c0p+α−2(x) and I2−α
−1+p+α−2(x) is a constant.

The only steady state solution on [−1, 1] with a total mass of one
that satisfies reflecting BCs is u∞(x) = 1/2.
This solution is the same as the steady-state solution for the classical
(α = 2) diffusion equation.
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Two-sided Jacobi Polyfractonomials

-1 -0.5 0 0.5 1
x

-3

-2

-1

0

1

2

3

Q
m

, 
 (

x)

m=0
m=1
m=2
m=3

Figure: Two-sided Jacobi polyfractonomials
(m = 0, 1, 2 and 3) with µ = ν = −.25.

Definition
The two-sided Jacobi
polyfractonomials used by (Mao and
Karniadakis, 2018) Qµ,ν

m (x) are
defined by

Qµ,ν
m (x) = (1 − x)µ(1 + x)νPµ,ν

m (x)

where Pµ,ν
m (x) are Jacobi polynomials

of order m ≥ 0 and µ, ν > −1.
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Fractional Integral of Qµ,ν
m (x)

Lemma
Let 1 < α < 2, p + q = 1, and let m ≥ 0 be an integer. Using Theorem
6.4 in (Podlubny, 1999)

pI2−α
−1+Qµ,ν

m (x) + qI2−α
1− Qµ,ν

m (x) = CmPν,µ
m (x) (9)

Dα
RLQµ,ν

m (x) = Cm
∂2

∂x2 Pν,µ
m (x), (10)

where
µ+ ν = α− 2

p − q = cot

(
π

(
α− 1

2 − µ

))
tan

(
α− 1

2 π

)
Cm =

sin(π(α− 1)/2)Γ(m + α− 1)
m! sin(π(α− 1)/2 − πµ)

.
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Kernel: Two-Sided Riemann-Liouville Derivative

Theorem
The kernel of the two-sided Riemann-Liouville derivative on [−1, 1] is given
by

ker(Dα
RL) = c0(1 − x)µ(1 + x)ν + c1x(1 − x)µ(1 + x)ν

where c0 and c1 are arbitrary constants.

Proof.
Let m = 0 or 1 in Dα

RLQµ,ν
m (x) = Cm

∂2

∂x2 Pν,µ
m (x). Then

∂2

∂x2 Pν,µ
m (x) = 0.

Since Pν,µ
m (x) is either a constant or a linear function, ker(Dα

RL)
follows.
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Two-Sided Fractional Diffusion: RL Steady-State

Theorem
The steady state solution with unit mass

u∞(x) = K(1 − x)µ(1 + x)ν

with normalization constant 1/K = B(ν + 1, µ+ 1)21+µ+ν satisfies
Dα

RLu∞(x) = 0 subject to reflecting BCs

pDα−1
−1+u(x, t) = qDα−1

1− u(x, t) for x = L and x = R for all t ≥ 0.

Proof.
Note that u∞(x) = c0Qµ,ν

0 (x) satisfies the zero flux condition
FRL(x, t) = −p∂/∂xI2−α

−1+u∞(x) + q∂/∂xI2−α
1− u∞(x) = 0, while c1Qµ,ν

1 (x)
does not.
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Two-Sided Fractional Diffusion: RL Steady-State
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(a) α = 1.5
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(b) α = 1.1

Figure: Analytical steady state solution u∞(x) = K(1 − x)µ(1 + x)ν evaluated using a) α = 1.5
and and b) α = 1.1 with p = 0 (solid), 0.25 (dashed), 0.5 (dash-dotted), and .75 (dotted).
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Kernel of Two-Sided Patie-Simon Derivative

Theorem
The kernel of the two-sided Patie-Simon derivative Dα

PS on the interval
[−1, 1] is given by

ker (Dα
PS) = c0 + c1(1 + x)1+ν

2F1(−µ, 1 + ν; 2 + ν; (1 + x)/2). (12)

where 2F1(a, b; c;w) is the Gauss hypergeometric function. In particular,
the steady state solution u∞(x) subject to reflecting BCs with L = −1 and
R = 1 with unit mass is u∞(x) = 1/2.

Remark
(Ervin et al., 2018) also computed the kernel of Dα

PS on [0, 1] using a
different method.
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Numerical Experiments: Riemann-Liouville Flux
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(b) p=0.75
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(c) p=0.5
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Figure: Numerical solutions using α = 1.5, C = 1, and reflecting BCs. t = 0 (solid), t = 0.05
(dotted), t = 0.1 (dash-dotted) and t = 2 (dashed), and the steady-state solution (circles).
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Numerical Experiments: Caputo Flux
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Figure: Numerical solutions using α = 1.5, C = 1, and p = 0.25 using a) absorbing BCs, b)
absorbing-reflecting BCs, c), reflecting-absorbing BCs, and d) reflecting BCs at t = 0 (solid),
t = 0.05 (dotted), t = 0.1 (dash-dotted) and t = 2 (dashed).
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Plan

1 Boundary Conditions (BCs) for One-Sided Fractional Diffusion

2 Two-Sided Fractional Diffusion: BCs and Numerical Methods

3 Two-Sided Fractional Diffusion: Analytical Steady-State Solutions

4 One-Sided Tempered Fractional Diffusion

5 Summary and Open Problems
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Tempered Fractional Diffusion (w/ A. Lischke)

The normalized tempered fractional diffusion equation is defined by

∂

∂tpλ(x, t) = Dα,λ
+ pλ(x, t)− λαpλ(x, t) (13)

where λ > 0 is the tempering parameter and 1 < α ≤ 2.
The tempered Riemann-Liouville (TRL) derivative is defined by

Dα,λ
L+ f(x) =e−λxDα

L+

(
eλxf(x)

)
=

1
Γ(2 − α)

d2

dx2

∫ x

L
e−λ(x−y)(x − y)1−αf(y) dy,

Solutions on the real line are tempered α-stable densities
pλ(x, t) = eλxp(x, t)e−tλα (Baeumer and Meerschaert, 2010).
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Kernel of Tempered Fractional Diffusion Equation

Determine all steady state-solutions u∞(x) (e.g., kernel) of the
one-sided tempered fractional diffusion equation on [0, 1]:

Dα,λ
0+ u∞(x)− λαu∞(x) = 0

We utilize the modified Mittag-Leffler functions E∗
α,β(x)

(Sankaranarayanan, 2014) and (Baeumer et al., 2018a):

E∗
α,β(x) = xβEα,β+1 (xα) =

∞∑
k=0

xkα+β

Γ(αk + β + 1)

where Eα,β(x) is the two-parameter Mittag-Leffler function (MLF).
The modified Mittag-Leffler functions are eigenfunctions of the
Riemann-Liouville derivative for β = α− 1 and β = α− 2

Dα
0+E∗

α,β(x) = E∗
α,β(x)
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Kernel of Tempered Fractional Diffusion Equation

Theorem
The tempered fractional diffusion equation has a kernel

u∞(x) = c0e−λxE∗
α,α−1(λx) + c1e−λxE∗

α,α−2(λx),

for 1 < α < 2 where c0 and c1 are arbitrary real constants.

Proof.
Choose w(x) such that u∞(x) = w(x)e−λx. Then
Dα,λ

0+ u∞(x)− λαu∞(x) = 0 reduces to an eigenvalue problem on the
interval [0, 1]

Dα
0+w(x) = λαw(x). (14)

Use the scaling property of the fractional derivative
Dα

0+f(λx) = λαDα
0+f(x), and both w(x) = E∗

α,α−1(λx) and
w(x) = E∗

α,α−2(λx) satisfy the eigenvalue problem.
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Steady State Solution with Reflecting Boundary Conditions

Theorem
The steady-state solution with unit mass for all t is

u∞(x) = e−λx

K
(
E∗
α,α−2(λx)− E∗

α,α−1(λx)
)

(15)

with normalization constant K = e−λλα−2Eα,α(λ
α).

Proof.
Let u0(x) = e−xE∗

α,α−1(x) and u1(x) = e−xE∗
α,α−2(x). By properties of

MLFs, u1(x) > u0(x) for all x > 0 and u0(x) ∼ 1/α and u1(x) ∼ 1/α.
Hence, the only choice c0 and c1 that ensures u∞(x) = u0(λx) + u1(λx)is
non-negative for any λ is c1 = −c0 = K > 0. Then normalize via

K =

∫ 1

0
(u1(x)− u0(x)) dx
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Numerical Solutions
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Figure: Numerical solutions using α = 1.5 and λ = 1. For b) short times, solutions are similar to
pλ(x). For d) long times, numerical solution converges to u∞(x).
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1 Boundary Conditions (BCs) for One-Sided Fractional Diffusion

2 Two-Sided Fractional Diffusion: BCs and Numerical Methods

3 Two-Sided Fractional Diffusion: Analytical Steady-State Solutions

4 One-Sided Tempered Fractional Diffusion

5 Summary and Open Problems
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Summary

Reflecting (Neumann) boundary conditions for two versions of the
two-sided, space-fractional diffusion equation that conserve mass were
established.
A conditionally stable explicit Euler scheme and an unconditionally
stable implicit Euler scheme were proposed using the shifted
Grünwald estimate from (Meerschaert and Tadjeran, 2004) and
stability was demonstrated using the Gerschgorin circle theorem.
Steady state solutions subject to reflecting BCs using
Riemann-Liouville flux are singular at one or more of the end-points,
while steady-state solutions subject to reflecting BCs using Caputo
flux are constant functions.
Steady-state solutions for (one-sided) tempered fractional diffusion
were shown.
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Open Problems

1 Explicitly compute the domains of the two-sided RL and PS fractional
derivatives using the two-sided Jacobi polyfractonomials. Perhaps this
can help establish well-posedness (in the strong sense) for two-sided
fractional diffusion.

2 What is the correct flux/model/BC combination for a given
application? Perhaps these 1D numerical models and steady-state
solutions combined with data can help us pick out correct model for
the application.

3 Applications to Hydrology and Fluid Mechanics: Adding an advection
(drift) term and non-homogeneous BCs. Also need to formulate
two-sided diffusion in 2D/3D with arbitrary boundaries.
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Caputo Fractional Diffusion is not a diffusion model!

Figure: Numerical solution of the Caputo fractional diffusion equation with α = 1.5.
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Iteration Matrix: Caputo Flux

Euler schemes associated with the Patie-Simon diffusion equation
subject to reflecting BCs have an iteration matrix (Baeumer et al.,
2018b)

bi,j =



gαj−i+1 if 0 < j < n and i ≤ j + 1
1 if i = 1 and j = 0
−1 if i = j = 0
−gα−1

j if i = 0 and 0 < j < n
−gα−2

n−1 if i = 0 and j = n
−gα−1

n−i if j = n and 0 < i ≤ n
0 otherwise ,
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Figure: Exact solution using the RL derivative (n = 100 grid points) and α = 1.5 with β = 2.
PS solution is very similar. b) relative L2 error of the numerical solution.
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u0(x) =
2β

1 + β
p+α (x)− Γ(1 + β)p+α+β(x). (16)

s(x, t) = −e−t
(

u0(x) +
2β

1 + β
− Γ(β + 1)p+β (x)

)
, (17)
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